Euler 115盘 下载 pdf txt 电子版 mobi snb docx

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:5分
书籍信息完全性:6分
网站更新速度:4分
使用便利性:6分
书籍清晰度:6分
书籍格式兼容性:9分
是否包含广告:5分
加载速度:4分
安全性:4分
稳定性:4分
搜索功能:3分
下载便捷性:6分
下载点评
- 章节完整(618+)
- 体验还行(136+)
- 服务好(90+)
- 超值(545+)
- 推荐购买(351+)
- 少量广告(660+)
- 值得下载(555+)
- 购买多(384+)
- 藏书馆(212+)
- azw3(339+)
- 体验好(386+)
- 实惠(570+)
下载评价
- 网友 师***怡:
说的好不如用的好,真心很好。越来越完美
- 网友 屠***好:
还行吧。
- 网友 堵***洁:
好用,支持
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 薛***玉:
就是我想要的!!!
喜欢"Euler"的人也看了
生产与与运作管理:制造与服务 115盘 下载 pdf txt 电子版 mobi snb docx
碳纳米管增强高性能水泥基复合材料制备与性能 115盘 下载 pdf txt 电子版 mobi snb docx
服装模板技术 115盘 下载 pdf txt 电子版 mobi snb docx
烹饪原料加工技术/吉林省精品课程开发建设系列教材 115盘 下载 pdf txt 电子版 mobi snb docx
有限晶体中的电子态 Bloch波的量子限域 第二版 中外物理学精品书系 固体物理学理想量子线电子态转移矩阵方法 北京大学【新书正版】 115盘 下载 pdf txt 电子版 mobi snb docx
会展策划与管理(全国普通高等院校旅游管理专业类十三五规划教材) 115盘 下载 pdf txt 电子版 mobi snb docx
三级企业人力资源管理师考试 过关必备 115盘 下载 pdf txt 电子版 mobi snb docx
梨园旧匾 115盘 下载 pdf txt 电子版 mobi snb docx
丁宗一中小学健康教育(续)4VCD视频讲座光盘现货 115盘 下载 pdf txt 电子版 mobi snb docx
神话全书:众神与他们的故事(了解世界神话,读这一本就够了) 115盘 下载 pdf txt 电子版 mobi snb docx
- 银行经济资本管理 廖继全【正版书籍】 115盘 下载 pdf txt 电子版 mobi snb docx
- 民族经典的立体再造歌剧<白毛女>3D舞台艺术片创作忆记 人民东方出版传媒有限公司 115盘 下载 pdf txt 电子版 mobi snb docx
- 速查速记 初中化学公式定律 口袋书随身记速记手册 115盘 下载 pdf txt 电子版 mobi snb docx
- 灌篮高手 115盘 下载 pdf txt 电子版 mobi snb docx
- 现场材料员岗位通 115盘 下载 pdf txt 电子版 mobi snb docx
- 中国法院2023年度案例系列(全23册) 115盘 下载 pdf txt 电子版 mobi snb docx
- 国乐无双 方锦龙的趣味国乐课 115盘 下载 pdf txt 电子版 mobi snb docx
- 乙烯、丙烯生产技术及经济分析 115盘 下载 pdf txt 电子版 mobi snb docx
- 丹諾自傳 115盘 下载 pdf txt 电子版 mobi snb docx
- 精品海参菜 115盘 下载 pdf txt 电子版 mobi snb docx
书籍真实打分
故事情节:5分
人物塑造:4分
主题深度:3分
文字风格:3分
语言运用:8分
文笔流畅:8分
思想传递:3分
知识深度:9分
知识广度:3分
实用性:8分
章节划分:6分
结构布局:3分
新颖与独特:8分
情感共鸣:9分
引人入胜:5分
现实相关:4分
沉浸感:9分
事实准确性:3分
文化贡献:4分