代数学I 115盘 下载 pdf txt 电子版 mobi snb docx

代数学I电子书下载地址
内容简介:
范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
书籍目录:
《代数学I》目录:
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
作者介绍:
Bartel Leendert van der Waerden (February 2, 1903, Amsterdam, Netherlands – January 12, 1996, Zürich, Switzerland) was a Dutch mathematician.
Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen. Amsterdam awarded him a Ph.D. for a thesis on algebraic geometry, supervised by Hendrick de Vries. Göttingen awarded him the habilitation in 1928.
In his 27th year, Van der Waerden published his Algebra, an influential two-volume treatise on abstract algebra, still cited, and perhaps the first treatise to treat the subject as a comprehensive whole. This work systematized an ample body of research by Emmy Noether, David Hilbert, Richard Dedekind, and Emil Artin. In the following year, 1931, he was appointed professor at the University of Leipzig.
The Third Reich made life difficult for Van der Waerden as a foreigner teaching in Germany, but he refused to give up his Dutch nationality. He filled the chair in mathematics at the University of Amsterdam, 1948–1951, then moved to the University of Zurich, where he spent the rest of his career, supervising more than 40 Ph.D. students.
Van der Waerden is mainly remembered for his work on abstract algebra. He also wrote on algebraic geometry, topology, number theory, geometry, combinatorics, analysis, probability and statistics, and quantum mechanics (he and Heisenberg had been colleagues at Leipzig). In his later years, he turned to the history of mathematics and science. His historical writings include Ontwakende wetenschap (1950), which was translated into English as Science Awakening (1954), Geometry and Algebra in Ancient Civilizations (1983), and A History of Algebra (1985).
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
网站评分
书籍多样性:7分
书籍信息完全性:4分
网站更新速度:5分
使用便利性:5分
书籍清晰度:9分
书籍格式兼容性:8分
是否包含广告:6分
加载速度:3分
安全性:5分
稳定性:6分
搜索功能:4分
下载便捷性:7分
下载点评
- 微信读书(498+)
- 体验还行(469+)
- 内容完整(410+)
- 图文清晰(184+)
- 无盗版(372+)
- 收费(562+)
- 藏书馆(448+)
下载评价
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 屠***好:
还行吧。
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 苍***如:
什么格式都有的呀。
- 网友 融***华:
下载速度还可以
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 焦***山:
不错。。。。。
- 网友 养***秋:
我是新来的考古学家
- 网友 田***珊:
可以就是有些书搜不到
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 康***溪:
强烈推荐!!!
- 网友 权***波:
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
喜欢"代数学I"的人也看了
南北朝演义.2,血腥政权 115盘 下载 pdf txt 电子版 mobi snb docx
西藏旅游手册 115盘 下载 pdf txt 电子版 mobi snb docx
物理化学学习指导 115盘 下载 pdf txt 电子版 mobi snb docx
难忘二战:硝烟中军旗军徽军歌的故事 115盘 下载 pdf txt 电子版 mobi snb docx
浮生六记(沈复给芸娘的至美情书,汪涵、胡歌、李现推荐,女诗人徐小泓浪漫译写) 115盘 下载 pdf txt 电子版 mobi snb docx
看见自己 115盘 下载 pdf txt 电子版 mobi snb docx
修复瑜伽 115盘 下载 pdf txt 电子版 mobi snb docx
【官方正版 假一罚十】国家行动程琳无论涉及到谁都将一查到底腐败的人背后有人我们的背后有国家悬疑推理警匪破案犯罪打黑惩除恶反腐刑侦探笔记官场小说 115盘 下载 pdf txt 电子版 mobi snb docx
伯努瓦幽默纸板书:我要种彩虹!(伯努瓦?沙尔拉是一名深受法国小朋友喜爱的低幼卡板书作者。画风别具一格,内容诙谐幽默,对幼儿心理有着很深的洞察) 115盘 下载 pdf txt 电子版 mobi snb docx
正版名著导读考点精练初中生**名著导读与考点同步解读一本通中考名著考点精练初中年级**中外名著考点精练状元满分笔记速读 115盘 下载 pdf txt 电子版 mobi snb docx
- 红领巾乐园语文三年级语文同步练习上册 115盘 下载 pdf txt 电子版 mobi snb docx
- 中国儿童百科全书(第三版) 115盘 下载 pdf txt 电子版 mobi snb docx
- 【正版全新】 建设法规王立久主编中国建材工业出版社9787802271609 115盘 下载 pdf txt 电子版 mobi snb docx
- 英语教学改革指导纲要/生命实践教育学研究院系列 115盘 下载 pdf txt 电子版 mobi snb docx
- 城市轨道交通车辆牵引及供电系统 115盘 下载 pdf txt 电子版 mobi snb docx
- 梦的解析 115盘 下载 pdf txt 电子版 mobi snb docx
- 俄语7 北京大学出版社 115盘 下载 pdf txt 电子版 mobi snb docx
- 青春期关键问题解决手册 许标 人民邮电出版社 【新华书店正版图书书籍】 115盘 下载 pdf txt 电子版 mobi snb docx
- 性生活300忌 115盘 下载 pdf txt 电子版 mobi snb docx
- 消防设施操作员 高级实操知识点-监控操作方向/消防设施操作员实操考评要点系列丛书 115盘 下载 pdf txt 电子版 mobi snb docx
书籍真实打分
故事情节:3分
人物塑造:7分
主题深度:6分
文字风格:9分
语言运用:6分
文笔流畅:9分
思想传递:6分
知识深度:8分
知识广度:9分
实用性:6分
章节划分:9分
结构布局:6分
新颖与独特:5分
情感共鸣:5分
引人入胜:8分
现实相关:8分
沉浸感:5分
事实准确性:5分
文化贡献:4分